ULTRA HEMATINIC

COMPREHENSIVE FORMULA DESIGNED TO SUPPORT HEALTHY RED BLOOD CELL FORMATION AND MAINTENANCE

- Provides essential nutrients required for healthy red blood cells.
- Designed to support normal gastrointestinal transit time.

ULTRA HEMATINIC provides a comprehensive blend of nutrients involved in the healthy replication and maintenance of red blood cells (RBCs). Healthy circulating levels of RBCs are essential for the delivery of oxygen and nutrients to the body’s tissues.

IRON (GLYCINATE) is the central component of heme, a porphyrin compound which provides the oxygen carrying function of RBCs. Low serum iron levels can result in poor oxygenation of RBCs, and therefore poor delivery to tissues. Supplemental iron has been found to be constipating in many individuals. The amino acid chelated form of iron, iron glycinate, provided in this product is a patented form which has been proven to reduce impairments in intestinal transit time. Iron has putative immune-enhancing capabilities. Iron is also necessary for the synthesis of the neurotransmitter dopamine, making it necessary for optimum cognitive function.

THIAMIN has erythropoietic properties. It is through this activity that thiamin supports the production of red blood cells.

PYRIDOXINE is involved in several key biological processes. Pyridoxal 5'-phosphate is the coenzyme for delta-aminolevulinate synthase, the first step in the synthesis of porphyrins. Heme is derived from protoporphyrin IX. Heme is the iron-containing prosthetic group that is an essential component of such proteins as hemoglobin, myoglobin, and the cytochromes. Pyridoxine supports a healthy red blood cell count and metabolism.

See the table below for the ingredients and serving sizes.
FOLIC ACID is necessary for DNA replication and healthy synthesis of RBCs. Folate deficiency may result in large, undifferentiated RBCs with low oxygen and nutrient carrying capacity.

VITAMIN B12 (CYANOCOBALAMIN) deficiency may result in irreversible damage to the central nervous system as well as interfere with healthy RBC replication.

COPPER is essential for proper formation of hemoglobin. Deficiency of this mineral is associated with pale (hypochromic), small (microcytic) red blood cells.

INTRINSIC FACTOR (IF) is a glycoprotein secreted by parietal cells of the stomach that is necessary for absorption of vitamin B12. Secretion of IF may decrease with age or may be impaired by low stomach acid levels. Low IF activity can lead to B12 deficiency.